Abstract

Efficiently mapping sensory stimuli onto motor programs is crucial for rapidly choosing appropriate behavioral responses. While neuronal mechanisms underlying simple, one-to-one sensorimotor mapping have been extensively studied, how the brain achieves complex, many-to-one sensorimotor mapping remains unclear. Here, we recorded single neuron activity from the lateral intraparietal (LIP) cortex of monkeys trained to map multiple spatial positions of visual cue onto two opposite saccades. We found that LIP neurons' activity was consistent with directly mapping multiple cue positions to the associated saccadic direction (SDir) regardless of whether the visual cue appeared in or outside neurons' receptive fields. Unlike the explicit encoding of the visual categories, such cue-target mapping (CTM)-related activity covaried with the associated SDirs. Furthermore, the CTM was preferentially mediated by visual neurons identified by memory-guided saccade. These results indicate that LIP plays a crucial role in the early stage of many-to-one sensorimotor transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call