Abstract
The mushroom body (MB) of the insect brain has important roles in odor learning and memory and in diverse other brain functions. To elucidate the anatomical basis underlying its function, we studied how the MB of Drosophila is organized by its intrinsic and extrinsic neurons. We screened for the GAL4 enhancer-trap strains that label specific subsets of these neurons and identified seven subtypes of Kenyon cells and three other intrinsic neuron types. Laminar organization of the Kenyon cell axons divides the pedunculus into at least five concentric strata. The alpha', beta', alpha, and beta lobes are each divided into three strata, whereas the gamma lobe appears more homogeneous. The outermost stratum of the alpha/beta lobes is specifically connected with a small, protruded subregion of the calyx, the accessory calyx, which does not receive direct olfactory input. As for the MB extrinsic neurons (MBENs), we found three types of antennal lobe projection neurons, among which two are novel. In addition, we resolved 17 other types of MBENs that arborize in the calyx, lobes, and pedunculus. Lobe-associated MBENs arborize in only specific areas of the lobes, being restricted along their longitudinal axes, forming two to five segmented zones in each lobe. The laminar arrangement of the Kenyon cell axons and segmented organization of the MBENs together divide the lobes into smaller synaptic units, possibly facilitating characteristic interaction between intrinsic and extrinsic neurons in each unit for different functional activities along the longitudinal lobe axes and between lobes. Structural differences between lobes are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.