Abstract

When injected systematically in rats, amphetamine routinely activates striatal neurons that increase firing rate in close temporal association with movement but suppresses nonmotor-related neurons. To assess the role of striatal mechanisms in these opposing effects, d-amphetamine (20 μg/μl) was infused (10 μl/h) directly into the striatum of awake, behaving rats and single-unit activity was recorded simultaneously at the infusion site. Intrastriataamphetamine reliably activated motor-related, but suppressed nonmotor-related neuronal activity shortly after infusion onset. These changes in firing rate preceded overt behavioral changes, in most cases by several minutes. When they did emerge, behavioral responses were characterized mainly by focused sniffing and head bobbing. Interestingly, the strongest behavioral responses, as measured by onset latency and response magnitude, were likely to result from infusions into motor-related rather than nonmotor-related recording sites. Systemic injection of haloperidol (1.0 mg/kg) shortly after offset suppressed both behavior and striatal neuronal activity. Control infusions of intrastriatal saline had no consistent effect on either striatal neuronal activity or behavior. Collectively, these results indicate that the divergence in firing rate between motor- and nonmotor-related striatal neurons reflects an intrinsic action of amphetamine in the striatum rather than a secondary effect of behavioral feedback. Moreover, the linkage of motor-related striatal areas with the strongest behavioral responses to amphetamine suggests important functional differences between motor- and nonmotor-related striatal neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.