Abstract

1. The purpose of this study was to describe the response properties of neurons in the supplementary motor area (SMA), including the supplementary eye fields (SEF) of three rhesus monkeys (Macaca mulatta) performing visually guided eye and forelimb movements. Seven hundred thirty single units were recorded in the dorsomedial agranular cortex while monkeys performed a go/no-go visual tracking task. The unit activity associated with rewarded, task-related movements was compared with that associated with unrewarded, spontaneous movements executed in the intertrial interval or when the task was not running. A number of neuronal response types were identified. 2. Sensory cells were characterized by their response to the visual and/or auditory target stimuli combined with no discharge associated with eye or forelimb movements. New information was provided about the receptive fields of the visual cells; they varied in size and, although many included the ipsilateral hemifield, they tended to emphasize the contralateral. A significant proportion of the visually responsive cells had receptive fields restricted to within 8 degrees of the fovea. The response latency was relatively long (greater than 90 ms) and variable. 3. Preparatory set cells were activated from the appearance of the target until the presentation of the go/no-go cue. This subpopulation ceased firing 50-100 ms before the movement was initiated. These cells tended to respond best in relation to contralateral movements. The response latency was similar to that of the sensory cells, although some of these units began to discharge in anticipation of predictable target presentations. These neurons were not active before unrewarded, spontaneous saccades. 4. Sensory-movement cells comprised the largest population of neurons identified in SMA. They were active from the appearance of the target until after the execution of the saccade. These neurons tended to respond preferentially in association with contraversive saccades. The latency of response to the target was significantly longer than that of the sensory cells. There was a large amount of variability in the time to reach the peak level of activation, and this population of units generally became inactivated shortly after the saccade was initiated. Although there were counterexamples, most sensory-movement cells responded equally in association with visually and auditory guided movements. In addition, these neurons were not active in relation to self-generated eye movements made during the intertrial intervals. 5. Pause-rebound cells were identified by their suppression at the appearance of the target and subsequent discharge associated with the saccade. These units tended to respond preferentially to contralateral targets.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.