Abstract

Extensive studies have ascribed a role to the brainstem cholinergic system in the generation of rapid eye movement (REM) sleep and ponto-geniculo-occipital (PGO) waves. Much of this work stems from systemic and central cholinergic drug administration studies. The brainstem cholinergic system is also implicated in cortical activation via basal forebrain, thalamic, and hypothalamic relay neurons. This cholinergic ascending reticular activating hypothesis has also been suggested by in vivo experiments under anesthetics and by in vitro studies using cholinergic agonists in thalamic and hypothalamic slices. During the last ten years, brainstem cholinergic neurons have been discovered to be in the peribrachial area (PBL). With the discovery of PBL cholinergic neurons, many studies were devoted to the examination of PBL neuronal activity and their connectivity. This article reviews PBL neuronal activity in behaving animals and the anatomical features of these neurons in relation to behavioral state control. The role of the PBL in the generation of REM sleep, PGO waves, and the ascending reticular activating system (ARAS) has been evaluated at the cellular and neurochemical level. Based on recent literature, tentative mechanisms of REM sleep generation, PGO waves generation, and the cortical activation process are also outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.