Abstract

Blood flow in the retina is intrinsically regulated to meet the metabolic demands of its constituent cells. Flickering light or stationary contrast reversals induce an increase in blood flow within seconds of the stimulus onset. This phenomenon is thought to compensate for an increase in ganglion cell activity and energy consumption. Ganglion cell activity is in turn dependent on signals from photoreceptors, bipolar cells, horizontal cells and amacrine cells. The physiological properties of these neurons determine how each type is affected by a particular light characteristic. Neuronal activity then triggers the release of signalling molecules that dilate local blood vessels and increase blood flow. Nitric oxide has been implicated as an important mediator, but metabolites of arachidonic acid may also be involved. Detailed elucidation of these mechanisms, together with advances in imaging technology, may facilitate the use of neurovascular tests to improve the detection of retinal damage in pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.