Abstract

Binge eating disorder (BED), characterized by bingeing episodes and compulsivity, is the most prevalent eating disorder; however, little is known about its neurobiological underpinnings. In humans, BED is associated with desensitization of the reward system, specifically, the medial prefrontal cortex (mPFC), nucleus accumbens (Acb), and ventral tegmental area (VTA). Additionally, BED patients feel relieved during bingeing, suggesting that bingeing helps to decrease the negative emotions they were feeling prior to the binge episode. However, the mechanisms that underlie this feeling of relief in BED patients have not been well investigated. To investigate neuronal activity before and during palatable food consumption in BED, we performed in vivo electrophysiological recordings in a binge-like eating rat model (bingeing, n = 12 and non-bingeing, n = 14) and analyzed the firing rate of neurons in the mPFC, Acb, and VTA before and during access to sucrose solution. We also investigated changes in the firing rate of neurons in these regions during and between active bingeing, which may underlie the feeling of relief in BED patients. We found that neuronal firing rates of mPFC and VTA neurons in bingeing rats were lower than those in non-bingeing rats before and during sucrose consumption. Palatable food consumption increased neuronal firing rates during and between active bingeing in bingeing rats. Our results suggest a desynchronization in the activity of reward system regions, specifically in the mPFC, in bingeing rats, which may also contribute to BED. These results are consistent with those of functional magnetic resonance imaging (fMRI) studies that reported decreased activity in the reward system in BED patients. We propose that increased neuronal activity in the mPFC, Acb, or VTA produces an antidepressant effect in rats, which may underlie the sense of relief patients express during bingeing episodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.