Abstract

Signaling by the p75 neurotrophin receptor (p75(NTR), also known as NGFR) is often referred to as cell-context dependent, but neuron-type-specific signaling by p75(NTR) has not been systematically investigated. Here, we report that p75(NTR) signals very differently in hippocampal neurons (HCNs) and cerebellar granule neurons (CGNs), and we present evidence indicating that this is partly controlled by differential proteolytic cleavage. Nerve growth factor (NGF) induced caspase-3 activity and cell death in HCNs but not in CGNs, whereas it stimulated NFκB activity in CGNs but not in HCNs. HCNs and CGNs displayed different patterns of p75(NTR) proteolytic cleavage. Whereas the p75(NTR) carboxy terminal fragment (CTF) was more abundant than the intracellular domain (ICD) in HCNs, CGNs exhibited fully processed ICD with very little CTF. Pharmacological or genetic blockade of p75(NTR) cleavage by γ-secretase abolished NGF-induced upregulation of NFκB activity and enabled induction of CGN death, phenocopying the functional profile of HCNs. Thus, the activities of multifunctional receptors, such as p75(NTR), can be tuned into narrower activity profiles by cell-type-specific differences in intracellular processes, such as proteolytic cleavage, leading to very different biological outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.