Abstract

Accumulated studies have suggested that mitogen-activated protein kinase (MAPK) play a pivotal role in the development of cerebral hypoxic preconditioning (HPC). By using our "auto-hypoxia"-induced HPC mouse model, we have reported increased phosphorylation level of p38 MAPK, and decreased phosphorylation and protein expression levels of extracellular signal regulated kinases 1/2 (ERK1/2) in the brain of HPC mice. In the current study, we investigated the involvement of c-Jun N-terminal kinase (JNK) in the brain of HPC mice. By using Western blot analysis, we found that the phosphorylation levels of JNK at Thr183 and Tyr185 sites (phospho-Thr183/Tyr185 JNK), but not its protein expression, increased significantly (p<0.05, n=6 for each group) both in the hippocampus and frontal cortex of early (H1-H4) and delayed (H5 and H6) HPC mice than that of the normoxic group (H0, n=6). Similarly, enhanced phospho-Thr183/Tyr185 JNK was also observed by immunostaining in the hippocampus and frontal cortex of mice following series of hypoxic exposures (H3 and H6). In addition, we found that phospho-Thr183/Tyr185 JNK predominantly co-localized with a neuron-specific protein, neurogranin, in both the hippocampus and frontal cortex of HPC mice (H3) by using double-labeled immunofluorescence. These results suggest that the increased neuron-specific phosphorylation of JNK at Thr183/Tyr185, not protein expression, might be involved in the development of cerebral HPC of mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.