Abstract

The pathophysiological bases of cognitive, motor, and behavioral abnormalities in patients infected with the human immunodeficiency virus (HIV-1) remain largely unknown. To test the possibility that changes in hippocampal neuronal structure may contribute to these neurologic abnormalities, we examined the brains of cats infected with the feline immunodeficiency virus (FIV), an animal model of HIV-1 infection. We evaluated the dentate gyrus by using Timm's staining to estimate the extent of granule cell axon reorganization and by using Nissl staining, immunocytochemistry, and the optical fractionator method to estimate changes in the number of different neuronal subtypes. FIV-infected cats had abnormally high amounts of Timm's staining in the inner molecular layer and granule cell layer and loss of Nissl-stained, somatostatin-immunoreactive, and parvalbumin-immunoreactive neurons in the hilus. An inverse correlation existed between hilar neuron numbers and extent of aberrant Timm's staining. Increased Timm's staining and hilar neuron loss occurred throughout the septotemporal axis of the hippocampus. This type of neuronal loss and synaptic reorganization may provide an anatomic basis for some of the neurologic symptoms found in FIV-infected cats and HIV-infected humans. J. Comp. Neurol. 411:563–577, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.