Abstract

Quantized neural networks (QNNs) are widely used to achieve computationally efficient solutions to recognition problems. Overall, eight-bit QNNs have almost the same accuracy as full-precision networks, but working several times faster. However, the networks with lower quantization levels demonstrate inferior accuracy in comparison to their classical analogs. To solve this issue, a number of quantization-aware training (QAT) approaches were proposed. In this paper, we study QAT approaches for two- to eight-bit linear quantization schemes and propose a new combined QAT approach: neuron-by-neuron quantization with straight-through estimator (STE) gradient forwarding. It is suitable for quantizations with two- to eight-bit widths and eliminates significant accuracy drops during training, which results in better accuracy of the final QNN. We experimentally evaluate our approach on CIFAR-10 and ImageNet classification and show that it is comparable to other approaches for four to eight bits and outperforms some of them for two to three bits while being easier to implement. For example, the proposed approach to three-bit quantization of the CIFAR-10 dataset results in 73.2% accuracy, while baseline direct and layer-by-layer result in 71.4% and 67.2% accuracy, respectively. The results for two-bit quantization for ResNet18 on the ImageNet dataset are 63.69% for our approach and 61.55% for the direct baseline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call