Abstract

Repeated sprint exercise (RSE) is often used to induce neuromuscular fatigue (NMF). It is currently not known whether NMF is influenced by different forearm positions during arm cycling RSE. The purpose of this study was to investigate the effects of a pronated versus supinated forearm position on elbow flexor NMF during arm cycling RSE. Participants (n = 12) completed ten 10-s maximal arm cycling sprints interspersed by 60 s of rest on 2 separate days using either a pronated or supinated forearm position. All sprints were performed on an arm cycle ergometer in a reverse direction. Prior to and following RSE, NMF measurements (i.e., maximal voluntary contraction (MVC), potentiated twitch (PT), electromyography median frequencies) were recorded. Sprint performance measures, ratings of perceived exertion (RPE) and pain were also recorded. Irrespective of forearm position, sprint performance decreased as sprint number increased. These decreases were accompanied by significant increases in RPE (p < 0.001, ηp2 = 0.869) and pain (p < 0.001, ηp2 = 0.745). Participants produced greater power output during pronated compared with supinated sprinting (p < 0.001, ηp2 = 0.728). At post-sprinting, the percentage decrease in elbow flexor MVC and PT force from pre-sprinting was significantly greater following supinated than pronated sprinting (p < 0.001), suggesting greater peripheral fatigue occurred in this position. The data suggest that supinated arm cycling RSE results in inferior performance and greater NMF compared with pronated arm cycling RSE. Novelty: NMF of the elbow flexors is influenced by forearm position during arm cycling RSE. Supinated arm cycling sprints resulted in worse repeated sprint performance and also greater NMF than pronated RSE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call