Abstract

The pharmacological effects of Bothrops neuwiedi pauloensis venom on mouse phrenic nerve-diaphragm (PND) preparations were studied. Venom (20 mg/ml) irreversibly inhibited indirectly evoked twitches in PND preparations (60 ± 10% inhibition, mean ± SEM; p<0.05; n=6). At 50 mg/ml, the venom blocked indirectly and directly (curarized preparations) evoked twitches in mouse hemidiaphragms. In the absence of Ca2+, venom (50 mg/ml), produced partial blockade only after an 80 min incubation, which reached 40.3 ± 7.8% (p<0.05; n=3) after 120 min. Venom (20 mg/ml) increased (25 ± 2%, p< 0.05) the frequency of giant miniature end-plate potentials in 9 of 10 end-plates after 30 min and the number of miniature end-plate potentials which was maximum (562 ± 3%, p<0.05) after 120 min. During the same period, the resting membrane potential decreased from - 81 ± 1.4 mV to - 41.3 ± 3.6 mV 24 fibers; p<0.01; n=4) in the end-plate region and from - 77.4 ± 1.4 to -44.6 ± 3.9 mV (24 fibers; p<0.01; n=4) in regions distant from the end-plate. These results indicate that B. n. pauloensis venom acts primarily at presynaptic sites. They also suggest that enzymatic activity may be involved in this pharmacological action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call