Abstract
In motor tasks with redundancy neuromotor noise can lead to variations in execution while achieving relative invariance in the result. The present study examined whether humans find solutions that are tolerant to intrinsic noise. Using a throwing task in a virtual set-up where an infinite set of angle and velocity combinations at ball release yield throwing accuracy, our computational approach permitted quantitative predictions about solution strategies that are tolerant to noise. Based on a mathematical model of the task expected results were computed and provided predictions about error-tolerant strategies (Hypothesis 1). As strategies can take on a large range of velocities, a second hypothesis was that subjects select strategies that minimize velocity at release to avoid costs associated with signal- or velocity-dependent noise or higher energy demands (Hypothesis 2). Two experiments with different target constellations tested these two hypotheses. Results of Experiment 1 showed that subjects chose solutions with high error-tolerance, although these solutions also had relatively low velocity. These two benefits seemed to outweigh that for many subjects these solutions were close to a high-penalty area, i.e. they were risky. Experiment 2 dissociated the two hypotheses. Results showed that individuals were consistent with Hypothesis 1 although their solutions were distributed over a range of velocities. Additional analyses revealed that a velocity-dependent increase in variability was absent, probably due to the presence of a solution manifold that channeled variability in a task-specific manner. Hence, the general acceptance of signal-dependent noise may need some qualification. These findings have significance for the fundamental understanding of how the central nervous system deals with its inherent neuromotor noise.
Highlights
Decrease of error and its variability as a consequence of practice is a widely recognized indicator of skilled performance and improvement
More recent studies have tried to look beyond pure outcome measures and examined the variability at different stages in movement generation, for example during the planning stage [1], during the execution of movements [2,3], and in the processing of sensory estimates [4]. Such variability or noise is the consequence of many processes at all spatiotemporal levels of the sensorimotor system arising, for example, in signal propagation due to synaptic fluctuations that affect the regularity of spike trains, or in the transduction of a continuous signal into discrete spike sequences [5]
Their research has been guided by the framework of decision theory and emphasized the cognitive decision making and planning when performing a motor task
Summary
Decrease of error and its variability as a consequence of practice is a widely recognized indicator of skilled performance and improvement. More recent studies have tried to look beyond pure outcome measures and examined the variability at different stages in movement generation, for example during the planning stage [1], during the execution of movements [2,3], and in the processing of sensory estimates [4]. Such variability or noise is the consequence of many processes at all spatiotemporal levels of the sensorimotor system arising, for example, in signal propagation due to synaptic fluctuations that affect the regularity of spike trains, or in the transduction of a continuous signal into discrete spike sequences [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.