Abstract

Real parallel computing with a quantum computer attracts vast interest due to its extreme high potential. We propose a neuromorphic quantum computation algorithm based on an adiabatic Hamiltonian evolution with energy dissipation. This algorithm can be applied to problems if a cost function can be expressed in a quadratic form. This requirement results from the fact that our Hamiltonian is designed by following a method similar to an artificial neural network (ANN). The state of an ANN is often trapped at local minima, and the network outputs an error. Since the state of a quantum system with the proposed algorithm is always in the ground state according to the adiabatic theorem, it is not necessary to be concerned that the quantum state is trapped at local minima. However, there is no guarantee that a quantum algorithm based on an adiabatic Hamiltonian evolution with degeneration or level crossing is successfully executed. We show successful numerical simulation results with the proposed algorithm by introducing energy dissipation to keep the quantum state staying in the ground state, and then we show an application to the $n$-queen problem, which is one of the combinatorial optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.