Abstract

Neuromorphic computing that emulates brain behaviors can address the challenge of von Neumann bottleneck and is one of the crucial compositions of next-generation computing. Here, the polynary oxide of amorphous InAlZnO (a-IAZO)-based memristor is employed as electronic synapse with essential properties of biological synapse, including spiking timing-dependent plasticity, paired-pulse facilitation, long-term depression/potentiation, and Pavlov associative memory. Especially, the a-IAZO memristor properties are quite sensitive to the oxygen vacancy content, which exhibit stable switching and narrow distribution of Set/Reset voltage due to the oxygen vacancy content decrease after high-temperature annealing in air, showing promise for memristor performance enhancement. This work promotes the development of high-performance memristors with polynary oxide for neuromorphic computing and opens a path for a-IAZO film application in optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call