Abstract

Restricted Boltzmann Machines (RBMs) and Deep Belief Networks (DBNs) have been demonstrated to perform efficiently on a variety of applications, such as dimensionality reduction and classification. Implementation of RBMs on neuromorphic platforms, which emulate large-scale networks of spiking neurons, has significant advantages from concurrency and low-power perspectives. This work outlines a neuromorphic adaptation of the RBM, which uses a recently proposed neural sampling algorithm (Buesing et al. 2011), and examines its algorithmic efficiency. Results show the feasibility of such alterations, which will serve as a guide for future implementation of such algorithms in neuromorphic very large scale integration (VLSI) platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.