Abstract

Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuipsTM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population.

Highlights

  • Hearing loss is common among older people

  • Due to the fact that the visual Regions of interest (ROI) showed barely positive activation in the AO condition, the observed V-AV connectivity in this condition might just reflect an artifact of increased activity in the AV ROI instead of functional connectivity change between the two ROIs

  • In the non-McGurk incongruent condition, both uni-sensory ROIs became significantly more synchronized with the AV ROI (A-AV: p < 0.01; V-AV: p < 0.01)

Read more

Summary

Introduction

Hearing loss is common among older people. Over 30% of the adult population between the ages of 65 and and nearly 50% of people older than have a hearing loss that affects communication and psychosocial health (National Institute on Deafness and Other Communication Disorders, https://www.nidcd.nih.gov). A topic of current interest in audiology and aging neuroscience is the benefits and neuromodulatory effects from HA use and auditory training (Pichora-Fuller and Levitt, 2012; Anderson et al, 2013; Ferguson and Henshaw, 2015; Morais et al, 2015; Rao et al, 2017). Functional magnetic resonance imaging (fMRI) can provide millimeter spatial resolution for investigating neuroanatomical basis of auditory plasticity (Hall, 2006), only one fMRI study has documented neuromodulatory effects after 3 months of HAs use in eight adults aged 30–53 who had congenital sensorineural hearing loss (SNHL; Hwang et al, 2006)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call