Abstract
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.