Abstract
Transcranial focused ultrasound (tFUS) is a promising technique of non-invasive brain stimulation for modulating neuronal activity with high spatial specificity. The medial prefrontal cortex (mPFC) has been proposed as a potential target for neuromodulation to prove emotional and sleep qualities. We aim to set up an appropriate clinical protocol for investigating the effects of tFUS stimulation of the bilateral mPFC for modulating the function of the brain-wide network using different sonication parameters. Seven participants received 20 min of 250 kHz tFUS to the bilateral mPFC with excitatory (70% duty cycle with sonication interval at 5 s) or suppressive (5% duty cycle with no interval) sonication protocols, which were compared to a sham condition. By placing the cigar-shaped sonication focus on the falx between both mPFCs, it was possible to simultaneously stimulate the bilateral mPFCs. Brain activity was analyzed using continuous electroencephalographic (EEG) recording during, before, and after tFUS. We investigated whether tFUS stimulation under the different conditions could lead to distinctive changes in brain activity in local brain regions where tFUS was directly delivered, and also in adjacent or remote brain areas that were not directly stimulated. This kind of study setting suggests that dynamic changes in brain cortical responses can occur within short periods of time, and that the distribution of these responses may differ depending on local brain states and functional brain architecture at the time of tFUS administration, or perhaps, at least temporarily, beyond the stimulation time. If so, tFUS could be useful for temporarily modifying regional brain activity, modulating functional connectivity, or reorganizing brain functions associated with various neuropsychiatric diseases, such as insomnia and depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.