Abstract
Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.