Abstract

ObjectiveTrans-spinal direct current stimulation (tsDCS) is a promising technique to modulate spinal circuits. Combining clinical with modelling studies can improve effectiveness of tsDCS protocols. The aim of this study is to measure the effects of lumbar tsDCS on motor spinal responses and observe if these are consistent with the electric field (E-field) predicted from a computational model. MethodsThe exploratory study design was double-blind crossover and randomized. tsDCS was delivered for 15 min (anodal, cathodal, sham) at L2 vertebra level (2.5 mA, 90 C/cm2) in 14 healthy subjects. F-wave, H-reflex, cortical silent period, motor evoked potential and sympathetic skin response were analyzed. Statistical methods were applied with Bonferroni correction for multiple comparisons, a p < 0.05 was set as significant. A human volume conductor model was obtained from available databases. E-field distributions in the spinal grey matter (GM) and white matter (WM) were calculated. ResultsNo tsDCS effects were observed. E-field magnitude predicted in the lumbosacral spinal GM and WM was <0.15 V/m, insufficient to ensure neuromodulation, which is consistent with the absence of effects. ConclusionThe tsDCS protocol applied did not change motor response to delivered stimulus, thus we observed no effect on motor spinal circuits. SignificanceFuture tsDCS protocols should be supported by computational models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.