Abstract

A biologically inspired control system has been developed for coordinating a tetrapod walking gait in the sagittal plane. The controller is built with biologically based neurons and synapses, and connections are based on data from literature where available. It is applied to a simplified, planar biomechanical model of a rat with 14 joints with an antagonistic pair of Hill muscle models per joint. The controller generates tension in the muscles through activation of simulated motoneurons. Though significant portions of the controller are based on cat research, this model is capable of reproducing hind leg behavior observed in walking rats. Additionally, the applied inter-leg coordination pathways between fore and hind legs are capable of creating and maintaining coordination in this rat model. Ablation tests of the different connections involved in coordination indicate the role of each connection in providing coordination with low variability.KeywordsNeural ControllerRatMammalCentral Pattern GeneratorInter-leg Coordination

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.