Abstract

We aimed to determine the changes in neural correlates of auditory information processing such as auditory detection, encoding, and sensory discrimination in pediatric patients with intractable epilepsy. In this magnetoencephalography (MEG) study, 10 patients and 10 age- and gender-matched healthy controls were investigated with the multi-feature mismatch negativity (MMN) paradigm. Latencies and amplitudes of M100, M150, M200, and MMN event-related fields were evaluated. All event-related fields in response to standard stimuli (M100, M150 and M200) and responses to occasional five deviant sounds, deviating from the standard stimuli either in duration, frequency, intensity, location, or by including a silent gap were reduced in amplitude in epilepsy patients compared with healthy controls. Our study suggests that auditory information processing is impaired in patients with drug-resistant epilepsy, being evident both in stimulus feature encoding (as reflected by changes of early event-related components, e.g., M100) and in cortical sound discrimination (as reflected by MMNm). The neural changes involving diminished M100 as well as MMNms for all five deviant sound types suggest wide-spread auditory information processing impairments in these patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.