Abstract

The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell–cell transfer of metabolic and electric signals. GJs are formed by connexins of which Cx43 is most widespread in the human body. In the brain, Cx43 GJs are mostly found in astroglia where they coordinate the propagation of Ca2+ waves, spatial K+ buffering, and distribution of glucose. Beyond its role in direct intercellular communication, Cx43 also forms unapposed, non-junctional hemichannels in the plasma membrane of glial cells. These allow the passage of several neuro- and gliotransmitters that may, combined with downstream paracrine signaling, complement direct GJ communication among glial cells and sustain glial-neuronal signaling. Mutations in the GJA1 gene encoding Cx43 have been identified in a rare, mostly autosomal dominant syndrome called oculodentodigital dysplasia (ODDD). ODDD patients display a pleiotropic phenotype reflected by eye, hand, teeth, and foot abnormalities, as well as craniofacial and bone malformations. Remarkably, neurological symptoms such as dysarthria, neurogenic bladder (manifested as urinary incontinence), spasticity or muscle weakness, ataxia, and epilepsy are other prominent features observed in ODDD patients. Over 10 mutations detected in patients diagnosed with neurological disorders are associated with altered functionality of Cx43 GJs/hemichannels, but the link between ODDD-related abnormal channel activities and neurologic phenotype is still elusive. Here, we present an overview on the nature of the mutants conveying structural and functional changes of Cx43 channels and discuss available evidence for aberrant Cx43 GJ and hemichannel function. In a final step, we examine the possibilities of how channel dysfunction may lead to some of the neurological manifestations of ODDD.

Highlights

  • oculodentodigital dysplasia (ODDD) manifests as a pleiotropic disease with patients exhibiting both morphological and functional deficiencies caused by mutations in the widespread GJA1 gene

  • The GJA1 gene product Cx43 plays a leading role in central nervous system (CNS) physiology and it comes with no surprise that neurological symptoms are included in the still expanding list of ODDD features

  • Trans-dominant negative effects of the mutants on other co-expressed Cxs are another likely explanation. Such effects have for instance been used to explain the dominant expression pattern of syndromic deafness caused by GJB2 (Cx26) mutations

Read more

Summary

INTRODUCTION

CONNEXIN CHANNELS: GAP JUNCTIONS AND HEMICHANNELS Cxs form two kinds of functional channels: GJs and HCs. GJs mediate the direct diffusion of ions and molecules with MWs up to 1.5 kDa, including inositol 1,4,5 trisphosphate (IP3), cyclic nucleotides, and energy molecules such as ATP (reviewed in Alexander and Goldberg, 2003), thereby contributing to the coordination of cell function in several organs and tissues. CONNEXIN LIFE CYCLE AND CHANNEL ASSEMBLY Because of the relatively short Cx half-life (1–6 h), there is a continuous synthesis and breakdown of the protein, enabling fast adaptation of GJ intercellular communication (GJIC) to the physiological needs of the tissue

Neurologic phenotype
Normal presence in PM No GJIC
Urinary incontinence Spastic paraplegia Epilepsy MRI white matter changes
No presence in the PM DN effect
Connexins and astrocyte modulation of synaptic transmission
Normal presence in PM
Increased presence in PM with
CONCLUSIONS
Findings
Hemichannels formed by connexin
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call