Abstract

BackgroundThe spectrum of neurological involvement in COVID-19 is not thoroughly understood. To the best of our knowledge, no systematic review with meta-analysis and a sub-group comparison between severe and non-severe cases has been published. The aim of this study is to assess the frequency of neurological manifestations and complications, identify the neurodiagnostic findings, and compare these aspects between severe and non-severe COVID-19 cases.MethodsA systematic search of PubMed, Scopus, EBSCO, Web of Science, and Google Scholar databases was conducted for studies published between the 1st of January 2020 and 22nd of April 2020. In addition, we scanned the bibliography of included studies to identify other potentially eligible studies. The criteria for eligibility included studies published in English language (or translated to English), those involving patients with COVID-19 of all age groups, and reporting neurological findings. Data were extracted from eligible studies. Meta-analyses were conducted using comprehensive meta-analysis software. Random-effects model was used to calculate the pooled percentages and means with their 95% confidence intervals (CIs). Sensitivity analysis was performed to assess the effect of individual studies on the summary estimate. A subgroup analysis was conducted according to severity. The main outcomes of the study were to identify the frequency and nature of neurological manifestations and complications, and the neuro-diagnostic findings in COVID-19 patients.Results44 articles were included with a pooled sample size of 13,480 patients. The mean age was 50.3 years and 53% were males. The most common neurological manifestations were: Myalgia (22.2, 95% CI, 17.2 to 28.1%), taste impairment (19.6, 95% CI, 3.8 to 60.1%), smell impairment (18.3, 95% CI, 15.4 to 76.2%), headache (12.1, 95% CI, 9.1 to 15.8%), dizziness (11.3, 95% CI, 8.5 to 15.0%), and encephalopathy (9.4, 95% CI, 2.8 to 26.6%). Nearly 2.5% (95% CI, 1 to 6.1%) of patients had acute cerebrovascular diseases (CVD). Myalgia, elevated CK and LDH, and acute CVD were significantly more common in severe cases. Moreover, 20 case reports were assessed qualitatively, and their data presented separately.ConclusionsNeurological involvement is common in COVID-19 patients. Early recognition and vigilance of such involvement might impact their overall outcomes.

Highlights

  • The spectrum of neurological involvement in COVID-19 is not thoroughly understood

  • Forty-four articles were included in the final meta-analysis and 20 case reports were included in the qualitative descriptive review (Fig. 1)

  • Subgroup and sensitivity analysis A subgroup analysis was done to compare clinical and diagnostic neurological features in patients with severe disease compared to patients with non-severe disease; this categorization was determined if the study classified them into these groups we performed a sensitivity analysis, in which the pooled estimates for each variable was recalculated, omitting one study at a time, to ensure that none of the included studies affected the results and to examine whether the overall effect size is statistically robust

Read more

Summary

Introduction

To the best of our knowledge, no systematic review with meta-analysis and a sub-group comparison between severe and nonsevere cases has been published. The aim of this study is to assess the frequency of neurological manifestations and complications, identify the neurodiagnostic findings, and compare these aspects between severe and nonsevere COVID-19 cases. Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) has spread rapidly over the past year causing the Coronavirus Disease 2019 (COVID-19) pandemic. SARS-CoV-2 primarily affects the respiratory system causing pneumonia, multiorgan dysfunction and failure are likely to occur in severe cases [2]. Other studies reported NC of COVID-19 like acute ischemic stroke, cerebral venous sinus thrombosis, cerebral hemorrhage, and rhabdomyolysis [6, 10]. Abnormal findings in neurodiagnostic studies (ND) including neuroimaging (CT and MRI), cerebrospinal fluid (CSF) analysis, and neurophysiological studies (Electroencephalogram (EEG), Nerve Conduction Study (NCS), and Electromyography (EMG)) have been described [6, 11, 12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.