Abstract

Mice representing precise genetic replicas of Huntington's disease (HD) were made using gene targeting to replace the short CAG repeat of the mouse Huntington's disease gene homolog (HDH:) with CAG repeats within the length range found to cause HD in humans. Mice with alleles of approximately 150 units in length exhibit late-onset behavioral and neuroanatomic abnormalities consistent with HD. These symptoms include a motor task deficit, gait abnormalities, reactive gliosis and the formation of neuronal intranuclear inclusions predominating in the striatum. This model differs from previously described HDH: knock-ins by its method of construction, longer repeat length and more severe phenotype. To our knowledge, this is the first knock-in mouse model of HD to show increased glial fibrillary acidic protein immunoreactivity in the striatum, suggesting that these mice have neuronal injury similar to that found early in the course of HD. These mice will serve as useful reagents in experiments designed to reveal the molecular nature of neuronal dysfunction underlying HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.