Abstract

An examination of the ability to learn an active avoidance response was made in rats subjected to 6-hydroxydopamine (6-OHDA) lesions of the individual terminal areas of the midbrain dopamine (DA) system or a lesion to all these terminal regions in one group. Lesions were made by infusing 8 μg (base) of 6-OHDA in 2 μl of vehicle into the following forebrain regions (each region representing a separate group of rats); frontal cortex, nucleus accumbens, corpus striatum and a double lesion of nucleus accumbens and corpus striatum. A separate group of rats received a smaller 6-OHDA lesion of the ventral substantia nigra. Only those rats with the combined double lesion of both the nucleus accumbens and corpus striatum (90% total depletion of dopamine) showed a severe deficit in acquisition of active avoidance. However, the rats with the separate 6-OHDA lesions to the mesolimbic or nigrostriatal DA systems did show the appropriate blockade of the amphetamine-induced locomotion or stereotyped behavior, respectively. In contrast, the rats with the double lesion showed no response to a low or high dose of amphetamine, remained cataleptic for the duration of the experiment but rapidly recovered from transient aphagia and adipsia (< 10days post lesion). Results suggest that a severe deficit in acquisition of an active avoidance response, similar to that observed with high doses of neuroleptics, requires destruction of all of the dopamine innervation of nucleus accumbens and corpus striatum. Results also suggest that both the mesolimbic and nigrostriatal dopamine systems act in concert to produce response enabling to important environmental events, and that the severe response enabling deficits observed in Parkinson's disease involves not only degeneration of the nigrostriatal dopamine system, but of the mesolimbic dopamine system as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.