Abstract

Larval zebrafish exhibit a variety of complex undulatory swimming patterns. This repertoire is controlled by the 300 neurons projecting from brain into spinal cord. Understanding how descending control signals shape the output of spinal circuits, however, is nontrivial. We have therefore developed a segmental oscillator model (using NEURON ) to investigate this system. We found that adjusting the strength of NMDA and glycinergic synapses enabled the generation of oscillation (tail-beat) frequencies over the range exhibited in different larval swim patterns. In addition, we developed a kinematic model to visualize the more complex axial bending patterns used during prey capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.