Abstract

BackgroundNeurotoxocarosis (NT) is induced by larvae of the dog or cat roundworm (Toxocara canis or T. cati) migrating and persisting in the central nervous system of paratenic hosts, including humans, and may be accompanied by severe neurological symptoms. Host- or parasite-induced immunoregulatory processes contribute to the pathogenesis, but detailed data on pathogenic mechanisms and involvement of signalling molecules during cerebral Toxocara species infections are scarce.MethodsTo elucidate alterations in immunomodulatory mediator pattern, comprehensive multiplex bead array assays profiling comprising 23 different cytokines and chemokines were performed during the course of T. canis- and T. cati-induced NT. To this end, cerebra and cerebella of experimentally infected C57Bl/6 J mice serving as paratenic host models were analysed at six different time points (days 7, 14, 28, 42, 70 and 98) post infectionem (pi).ResultsBrain-body mass ratios of T. canis and T. cati-infected mice were significantly lower than those of the uninfected control group at day 14 pi, and also at day 28 pi for T. canis-infected mice. Both infection groups showed a continuous decrease of pro-inflammatory cytokine concentrations, including TNF-α, IFN-γ, GM-CSF and IL-6, in the cerebrum over the course of infection. Additionally, T. canis but not T. cati-induced neurotoxocarosis was characterised by significantly elevated levels of anti-inflammatory IL-4 and IL-5 in the cerebrum in the acute and subacute phase of the disease. The higher neuroaffinity of T. canis led to a prominent increase of eotaxin and MIP-1α in both the cerebrum and cerebellum, while in T. cati-infected mice, these chemokines were significantly elevated only in the cerebellum.ConclusionsThe direct comparison of T. canis- and T. cati-induced NT provides valuable insights into key regulatory mechanisms of Toxocara species in paratenic hosts. The cerebral cyto-/chemokine milieu is shifted to a predominantly anti-inflammatory immune response during NT, possibly enabling both survival of the parasite and the neuroinfected paratenic host. Alteration of eotaxin and MIP-1α concentrations are congruent with the higher neuroaffinity of T. canis and species-specific tropism of T. canis to the cerebrum and T. cati to the cerebellum.

Highlights

  • Neurotoxocarosis (NT) is induced by larvae of the dog or cat roundworm (Toxocara canis or T. cati) migrating and persisting in the central nervous system of paratenic hosts, including humans, and may be accompanied by severe neurological symptoms

  • Alteration of eotaxin and MIP-1α concentrations are congruent with the higher neuroaffinity of T. canis and species-specific tropism of T. canis to the cerebrum and T. cati to the cerebellum

  • Mice infected with T. canis developed earlier and more severe symptoms than those infected with T. cati, comprising ataxia to paresis and paraplegia, incoordination, balance problems and reduced fear- and flight-related behaviour

Read more

Summary

Introduction

Neurotoxocarosis (NT) is induced by larvae of the dog or cat roundworm (Toxocara canis or T. cati) migrating and persisting in the central nervous system of paratenic hosts, including humans, and may be accompanied by severe neurological symptoms. A variety of other species, including humans, may act as paratenic hosts upon ingestion of infective Toxocara larvae (L3). Migration and accumulation of larvae in tissues of paratenic hosts can cause the clinical picture of toxocarosis, one of the most common zoonotic infections worldwide [6]. The so called neurotoxocarosis (NT) is induced by larvae migrating and persisting in the central nervous system (CNS) [7], potentially causing meningitis, encephalitis, myelitis, cerebral vasculitis or behavioural disorders [7,8,9]. Even though seropositivity rates in humans against Toxocara species range from 2 to 44% in Europe and 63 to 93% in tropical regions [6, 11,12,13], cases of NT tend to be underestimated due to nonspecific clinical signs

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.