Abstract

Prion infections of the central nervous system (CNS) are characterized by a reactive gliosis and the subsequent degeneration of neuronal tissue. The activation of glial cells, which precedes neuronal death, is likely to be initially caused by the deposition of misfolded, in part proteinase K-resistant, isoforms (termed PrP(TSE)) of the normal cellular prion protein (PrP(c)) in the brain. Proinflammatory cytokines and chemokines released by PrP(TSE)-activated glial cells and stressed neurons may contribute directly or indirectly to the disease development by enhancement and generalization of the gliosis and via cytotoxicity for neurons. Recent studies have illustrated that interfering with inflammatory responses may represent a therapeutic approach to slow down the course of disease development. Hence, a better understanding of driving factors in neuroinflammation may well contribute to the development of improved strategies for treatment of prion diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.