Abstract
Neuroinflammation appears to be an important pathogenic process in amyotrophic lateral sclerosis (ALS). Dysfunction of central immune pathways, including activation of microglia and astrocytes, and peripherally derived immune cells, initiate noncell autonomous inflammatory mechanisms leading to degeneration. Cell autonomous pathways linked to ALS genetic mutations have been recently identified as contributing mechanism for neurodegeneration. The current review provides insights into the pathogenic importance of central and peripheral inflammatory processes in ALS pathogenesis and appraises their potential as therapeutic targets. ALS is a multistep process mediated by a complex interaction of genetic, epigenetic, and environmental factors. Noncell autonomous inflammatory pathways contribute to neurodegeneration in ALS. Activation of microglia and astrocytes, along with central nervous system infiltration of peripherally derived pro-inflammatory innate (NK-cells/monocytes) and adaptive (cell-mediated/humoral) immune cells, are characteristic of ALS. Dysfunction of regulatory T-cells, elevation of pro-inflammatory cytokines and dysbiosis of gut microbiome towards a pro-inflammatory phenotype, have been reported as pathogenic mechanisms in ALS. Dysregulation of adaptive and innate immunity is pathogenic in ALS, being associated with greater disease burden, more rapid disease course and reduced survival. Strategies aimed at modulating the pro-inflammatory immune components could be of therapeutic utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.