Abstract
Clinical, epidemiological and experimental studies confirm a connection between the common degenerative movement disorder Parkinson's disease (PD) that affects over 1million individuals, and Gaucher disease, the most prevalent lysosomal storage disorder. Recently, human imaging studies have implicated impaired striatal dopaminergic neurotransmission in early PD pathogenesis in the context of Gaucher disease mutations, but the underlying mechanisms have yet to be characterized. In this report we describe and characterize two novel long-lived transgenic mouse models of Gba deficiency, along with a subchronic conduritol-ß-epoxide (CBE) exposure paradigm. All three murine models revealed striking glial activation within nigrostriatal pathways, accompanied by abnormal α-synuclein accumulation. Importantly, the CBE-induced, pharmacological Gaucher mouse model replicated this change in dopamine neurotransmission, revealing a markedly reduced evoked striatal dopamine release (approximately 2-fold) that indicates synaptic dysfunction. Other changes in synaptic plasticity markers, including microRNA profile and a 24.9% reduction in post-synaptic density size, were concomitant with diminished evoked dopamine release following CBE exposure. These studies afford new insights into the mechanisms underlying the Parkinson's–Gaucher disease connection, and into the physiological impact of related abnormal α-synuclein accumulation and neuroinflammation on nigrostriatal dopaminergic neurotransmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.