Abstract

Although methylphenidate hydrochloride (MPH) is a first-line treatment for children with attention-deficit hyperactivity disorder (ADHD), the non-response rate is 30%. Our aim was to develop a supplementary neuroimaging biomarker for predicting the clinical effect of continuous MPH administration by using near-infrared spectroscopy (NIRS). After baseline assessment, we performed a double-blind, placebo-controlled, crossover trial with a single dose of MPH, followed by a prospective 4-to-8-week open trial with continuous MPH administration, and an ancillary 1-year follow-up. Twenty-two drug-naïve and eight previously treated children with ADHD (NAÏVE and NON-NAÏVE) were compared with 20 healthy controls (HCs) who underwent multiple NIRS measurements without intervention. We tested whether NIRS signals at the baseline assessment or ΔNIRS (single dose of MPH minus baseline assessment) predict the Clinical Global Impressions-Severity (CGI-S) score after 4-to-8-week or 1-year MPH administration. The secondary outcomes were the effect of MPH on NIRS signals after single-dose, 4-to-8-week, and 1-year administration. ΔNIRS significantly predicted CGI-S after 4-to-8-week MPH administration. The leave-one-out classification algorithm had 81% accuracy using the NIRS signal. ΔNIRS also significantly predicted CGI-S scores after 1 year of MPH administration. For secondary analyses, NAÏVE exhibited significantly lower prefrontal activation than HCs at the baseline assessment, whereas NON-NAÏVE and HCs showed similar activation. A single dose of MPH significantly increased activation compared with the placebo in NAÏVE. After 4-to-8-week administration, and even after MPH washout following 1-year administration, NAÏVE demonstrated normalized prefrontal activation. Supplementary NIRS measurements may serve as an objective biomarker for clinical decisions and monitoring concerning continuous MPH treatment in children with ADHD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.