Abstract

Bipolar disorder (BD) is a common mood disorder that can have severe consequences during later life, including suffering and impairment due to mood and cognitive symptoms, elevated risk for dementia and an especially high risk for suicide. Greater understanding of the brain circuitry differences involved in older adults with BD (OABD) in later life and their relationship to aging processes is required to improve outcomes of OABD. The current literature on gray and white matter findings, from high resolution structural and diffusion-weighted magnetic resonance imaging (MRI) studies, has shown that BD in younger age groups is associated with gray matter reductions within cortical and subcortical brain regions that subserve emotion processing and regulation, as well as reduced structural integrity of white matter tracts connecting these brain regions. While fewer neuroimaging studies have focused on OABD, it does appear that many of the structural brain differences found in younger samples are present in OABD. There is also initial suggestion that there are additional brain differences, for at least a subset of OABD, that may result from more pronounced gray and white matter declines with age that may contribute to adverse outcomes. Preclinical and clinical data supporting neuro-plastic and -protective effects of mood-stabilizing medications, suggest that treatments may reverse and/or prevent the progression of brain changes thereby reducing symptoms. Future neuroimaging research implementing longitudinal designs, and large-scale, multi-site initiatives with detailed clinical and treatment data, holds promise for reducing suffering, cognitive dysfunction and suicide in OABD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call