Abstract

In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.

Highlights

  • Health research strategies using neuroimaging have shifted in recent years: the focus has moved from patient care only, to a combination of patient care and prevention

  • We provide a regular Python module, named cwbrowser,9 that implements a Python API to connect and send RQL to a remote data sharing service (DSS) based on the CW framework

  • We developed a novel and lightweight PIx software infrastructure exclusively based on the CW framework

Read more

Summary

Introduction

Health research strategies using neuroimaging have shifted in recent years: the focus has moved from patient care only, to a combination of patient care and prevention. In the case of neurodegenerative and psychiatric diseases, this drives the creation of increasingly numerous massive imaging studies known as Population Imaging (PI) surveys (Hurko et al, 2012; Poldrack and Gorgolewski, 2014). It should be noticed that PI studies no longer consist of image data only. The recent wide availability of high-throughput genomics has augmented the subject data with genetics, epigenetics, and functional genomics. The standardization of personality, demographics, and deficit tests in psychiatry facilitates the acquisition of clinical/behavioral records to enrich the subject data in large population studies. PI studies classically encompass more than one single imaging session per subject and cover multiple-time point heterogeneous experiments

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.