Abstract

The ability to recognize others' emotions is critical to successful interpersonal interactions. Given its importance, there has been an extensive amount of research using functional magnetic resonance imaging (fMRI) to investigate the neurobiological mechanisms associated with facial affect recognition in healthy individuals, and some in patient populations with affective disorders. Findings from these studies reveal that the underlying mechanisms involve a distributed neural network, engaging structures within limbic and subcortical regions, prefrontal cortex, temporal and parietal lobes, and occipital cortex. In the last several decades, researchers have become increasingly interested in how emotion recognition is affected after a traumatic brain injury (TBI), which often involves damage to these structures, as well as the neural circuitry connecting them. Not surprisingly, research has reliably demonstrated that facial affect recognition deficits are common after TBI. To date, however, no neuroimaging studies have investigated facial affect recognition deficits in the TBI population. Consequently, the purpose of this paper is to consider how functional magnetic resonance imaging (fMRI) might inform our knowledge about affect recognition deficits after TBI, and potentially enhance treatment approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.