Abstract

DeepMind’s recent spectacular success in using deep convolutional neural nets and machine learning to build superhuman level agents—e.g. for Atari games via deep Q-learning and for the game of Go via other deep Reinforcement Learning methods—raises many questions, including to what extent these methods will succeed in other domains. In this paper we consider DQL for the game of Hex: after supervised initializing, we use self-play to train NeuroHex, an 11-layer convolutional neural network that plays Hex on the 13 \(\times \) 13 board. Hex is the classic two-player alternate-turn stone placement game played on a rhombus of hexagonal cells in which the winner is whomever connects their two opposing sides. Despite the large action and state space, our system trains a Q-network capable of strong play with no search. After two weeks of Q-learning, NeuroHex achieves respective win-rates of 20.4% as first player and 2.1% as second player against a 1-s/move version of MoHex, the current ICGA Olympiad Hex champion. Our data suggests further improvement might be possible with more training time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.