Abstract
Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works. Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datasets, automatic tracing and reconstruct the neuronal connections from the image stacks is essential to form the large scale circuits. However, the first step among which, automated location the soma across different brain areas remains a challenge. Here, we addressed this problem by introducing L1 minimization model. We developed a fully automated system, NeuronGlobalPositionSystem (NeuroGPS) that is robust to the broad diversity of shape, size and density of the neurons in a mouse brain. This method allows locating the neurons across different brain areas without human intervention. We believe this method would facilitate the analysis of the neuronal circuits for brain function and disease studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.