Abstract

Pancreatic cancer is an extremely aggressive malignancy with a very disappointing prognosis. Neuroglobin (NGB), a member of the globin family, has been demonstrated to have a significant role in a variety of tumor forms. The possible role of NGB as a tumor suppressor gene in pancreatic cancer was investigated in this work. Information from the public dataset TCGA combined with GTEx was used to analyze the finding that NGB was commonly downregulated in pancreatic cancer cell lines and tissues, correlating with patient age and prognosis. The expression of NGB in pancreatic cancer was investigated via RT-PCR, qRT-PCR, and Western blot experiments. In-vitro and in-vivo assays, NGB elicited cell cycle arrest in the S phase and apoptosis, hindered migration and invasion, reversed the EMT process, and suppressed cell proliferation and development. The mechanism of action of NGB was predicted via bioinformatics analysis and validated using Western blot and co-IP experiments revealed that NGB inhibited the EGFR/AKT/ERK pathway by binding to and reducing expression of GNAI1 and p-EGFR. In addition, pancreatic cancer cells overexpressing NGB showed increased drug sensitivity to gefitinib (EGFR-TKI). In conclusion, NGB inhibits pancreatic cancer progression by specifically targeting the GNAI1/EGFR/AKT/ERK signaling axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call