Abstract

Manganese-Enhanced Magnetic Resonance Imaging (MEMRI), (1)H and (13)C High-Resolution-Magic Angle Spinning (HR-MAS) Spectroscopy, and genomic approaches were used to compare cerebral activation and neuronal and glial oxidative metabolism in ad libitum fed C57BL6/J leptin-deficient, genetically obese ob/ob mice. T(1)-weighted Magnetic Resonance Images across the hypothalamic Arcuate and the Ventromedial nuclei were acquired kinetically after manganese infusion. Neuroglial compartmentation was investigated in hypothalamic biopsies after intraperitoneal injections of [1-(13)C]glucose or [2-(13)C]acetate. Total RNA was extracted to determine the effects of leptin deficiency in the expression of representative genes coding for regulatory enzymes of hypothalamic energy pathways and glutamatergic neurotransmission. Manganese-Enhanced Magnetic Resonance Imaging revealed enhanced cerebral activation in the hypothalamic Arcuate and Ventromedial nuclei of the ob/ob mice. (13)C HR-MAS analysis showed increased (13)C accumulation in the hypothalamic glutamate and glutamine carbons of ob/ob mice after the administration of [1-(13)C]glucose, a primarily neuronal substrate. Hypothalamic expression of the genes coding for glucokinase, phosphofructokinase, pyruvate dehydrogenase, and glutamine synthase was not significantly altered while pyruvate kinase expression was slightly upregulated. In conclusion, leptin deficiency associated with obesity led to increased cerebral activation in the hypothalamic Arcuate and Ventromedial nuclei, concomitant with significant increases in neuronal oxidative metabolism and glutamatergic neurotransmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.