Abstract
Circadian clocks enable the organisms to anticipate predictable cycling events in the environment. The mechanisms of the main circadian clock, localized in the suprachiasmatic nuclei of the hypothalamus, involve intracellular autoregulatory transcriptional loops of specific genes, called clock genes. In the suprachiasmatic clock, circadian oscillations of clock genes are primarily reset by light, thus allowing the organisms to be in phase with the light-dark cycle. Another circadian timing system is dedicated to preparing the organisms for the ongoing meal or food availability: the so-called food-entrainable system, characterized by food-anticipatory processes depending on a circadian clock whose location in the brain is not yet identified with certainty. Here we review the current knowledge on food anticipation in mice lacking clock genes or feeding-related genes. The food-entrainable clockwork in the brain is currently thought to be made of transcriptional loops partly divergent from those described in the light-entrainable suprachiasmatic nuclei. Possible confounding effects associated with behavioral screening of meal anticipation in mutant mice are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.