Abstract
In this paper, navigation techniques for several mobile robots are investigated in a totally unknown environment. In the beginning, Fuzzy logic controllers (FLC) using different membership functions are developed and used to navigate mobile robots. First a fuzzy controller has been used with four types of input members, two types of output members and three parameters each. Next two types of fuzzy controllers have been developed having same input members and output members with five parameters each. Each robot has an array of sensors for measuring the distances of obstacles around it and an image sensor for detecting the bearing of the target. It is found that the FLC having Gaussian membership function is best suitable for navigation of multiple mobile robots. Then a hybrid neuro-fuzzy technique has been designed for the same problem. The neuro-fuzzy technique being used here comprises a neural network, which is acting as a pre processor for a fuzzy controller. The neural network considered for neuro-fuzzy technique is a multi-layer perceptron, with two hidden layers. These techniques have been demonstrated in simulation mode, which depicts that the robots are able to avoid obstacles and reach the targets efficiently. Amongst the techniques developed neuro-fuzzy technique is found to be most efficient for mobile robots navigation. Experimental verifications have been done with the simulation results to prove the authenticity of the developed neuro-fuzzy technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.