Abstract

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease associated with axonal injury, and neurofilament light chains in serum (sNfL) are considered a biomarker for this damage. We aimed to investigate the relationship between sNfL and the axonal damage in early MS lesions in a special cohort of biopsied patients. sNfL from 106 biopsied patients with 26 follow-up samples were analyzed using single-molecule array (SiMoA) technology. Findings were correlated with clinical parameters and histological findings of acute axonal damage (APP-positive spheroids) and axonal loss in different lesion stages. A median of 59 pg/ml sNfL was found (range 8–3101 pg/ml). sNfL levels correlated with APP-positive spheroids in early active demyelinating lesions that represent the earliest lesion stages (p < 0.01). A significant negative correlation between sNfL levels in follow-up blood samples and axonal density in normal-appearing white matter was also observed (p = 0.02). sNfL levels correlated with the Expanded Disability Status Score at biopsy (p < 0.01, r = 0.49) and at last clinical follow-up (p < 0.01, r = 0.66). In conclusion, sNfL likely represent a compound measure of recent and ongoing neuroaxonal damage. We found that sNfL in biopsied MS patients correlate with acute axonal damage in the earliest MS lesion stages. Determination of sNfL levels thus allows insight into brain pathology and underlines the relevance of relapse-associated lesional pathology. Axonal loss in normal-appearing white matter contributes to sNfL levels independent of relapses. Since sNfL levels correlate with clinical disability, they may predict the future disability of patients and help with individual treatment decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call