Abstract

Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Our study consisted of three stages. First, the long-term memory of participants was measured. In the second stage, the participants in the NFB group received 3 days of theta/low-beta NFB training. In the third stage, the long-term memory was measured again. The NFB group had better episodic and semantic long-term memory than the control group and significant differences in brain activity between episodic and semantic memory during the recall tests were revealed. These findings suggest that it is possible to improve episodic and semantic long-term memory abilities through theta/low-beta NFB training.

Highlights

  • Understanding and improving memory are vital to enhance human life

  • All individuals participated in the encoding tasks for the two types of memory, i.e. episodic and semantic memory, on the first day (Day 1), and the recall test was performed again 20 min after the encoding tasks and on the second (Day 2) and seventh days (Day 3)

  • There was a significant interaction effect of GROUP and TIME (F(1,26) = 4.3, p = 0.044, ηp2 = 0.0061; Fig. 3d). These results suggest that participants in the NFB group achieved higher theta/low-beta PSD for episodic memory after training than participants in the control group

Read more

Summary

Introduction

Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Previous studies have reported that participants can modulate and increase the EEG band power via NFB training, resulting in improved ­memory[12]. Several previous studies have investigated the effect of memory training using NFB techniques Results of those studies suggested that the gamma-band activity plays a role in managing the retrieval of episodic memories and affects episodic memory after gamma NFB t­ raining[16,17]. To investigate the effect of NFB training on episodic and semantic memory over a long time frame, the consolidation of memory was measured.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call