Abstract

Artificial neural networks are means which are, among several other approaches, effectively usable for modelling and control of non-linear dynamic systems. In case of modelling systems input and output signals are a-priori known, supervised learning methods can be used. But in case of controller design of dynamic systems the required (optimal) controller output is a-priori unknown, supervised learning cannot be used. In such case we only can define some criterion function, which represents the required control performance of the closed-loop system. We present a neuro-evolution design for control of a continuous-time controller of non-linear dynamic systems. The controller is represented by an MLP-type artificial neural network. The learning algorithm of the neural network is based on an evolutionary approach with genetic algorithm. An integral-type performance index representing control quality, which is based on closed-loop simulation, is minimised. The results are demonstrated on selected experiments with controller reference value changes as well as with noisy system outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.