Abstract

This paper presents a multi-agent system that handles unit micromanagement using online machine learning in real time strategy games. We used rtNEAT algorithm in order to obtain customized neural network topologies, thus avoiding to complex network architecture. We use an ontology based template to create suitable input and outputs for unit agents enabling them to cooperate and form teams for their mutual benefit and eliminating communication overhead. The AI system was implemented using the JADE framework and the BWAPI handled communication between our system and the game. We have chosen Starcraft as a testbed. As a baseline we compared the in game AI as well as several other AI solutions that use adaptive mechanisms. DOI: http://dx.doi.org/10.5755/j01.itc.43.1.4600

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.