Abstract
We investigated the neuroendocrine regulation of the development of seasonal morphs in a bivoltine race (Daizo) of the silkmoth, Bombyx mori, by decerebration, the transplantation of brain–suboesophageal ganglion (Br-SG) complexes and the injection of active neuropeptides. When brains were removed from fresh pupae destined to develop into summer morphs (SD pupae) by embryonic and larval exposures to short days at low temperature, the pupae developed into autumn or intermediate morphs. However, in pupae destined to develop into autumn morphs (LD pupae), the operation did not show an effect on seasonal morph development. Br-SG complexes were excised from fifth-instar LD and fifth-instar SD larvae 2 days after larval ecdysis and were transplanted into the abdomen of SD larvae of the same age. The Br-SG complexes of LD larvae, but not the Br-SG complexes of SD larvae, shifted the host's seasonal morph development toward the autumn morph. Furthermore, when treated with crude pupal SGs extract and diapause hormone (DH), fresh SD pupae developed into autumn or intermediate morphs, respectively. Possibly the development of seasonal morphs in the silkmoth, B. mori, is regulated by a novel function of DH. Alternatively, DH may act on the imaginal wing disks at an earlier stage than on the ovaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.