Abstract

After the discovery of GnRH, GnRH neurons have been considered to represent the final common pathway for the neural control of reproduction. There is now compelling data in mammals that two populations of kisspeptin neurons constitute two different systems to control the episodic and surge release of GnRH/LH for the control of different aspects of reproduction, follicular development and ovulation. However, accumulating evidence indicates that kisspeptin neurons in non-mammalian species do not serve as a regulator of reproduction, and the non-mammalian species are believed to show only surge release of GnRH to trigger ovulation. Therefore, the GnRH neurons in non-mammalian species may offer simpler models for the study of their functions in neuroendocrine regulation of reproduction, especially ovulation. Our research group has taken advantage of many unique technical advantages of small fish brain for the study of anatomy and physiology of GnRH neurons, which underly regular ovulatory cycles during the breeding season. Here, recent advances in multidisciplinary study of GnRH neurons are reviewed, with a focus on studies using small teleost fish models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call