Abstract

Sleep is not a uniform state but is characterized by the cyclic alternation between rapid eye movement (REM) and non-REM sleep with a periodicity of 90–110 min. This cycle length corresponds to one of the oscillations in electroencephalographic (EEG) activity in the delta frequency band (0.5–3.5 Hz), which reflect the depth of sleep. To demonstrate the intimate link between EEG and neuroendocrine rhythmic activities in man, we adopted a procedure permitting simultaneous analysis of sleep EEG activity in the delta band and of two activating systems: the adrenocorticotropic system and the autonomic nervous system. Adrenocorticotropic activity was evaluated by calculating the cortisol secretory rate in blood samples taken at 10-min intervals. Autonomic activity was estimated by two measures of heart rate variability: 1) by the ratio of low-frequency (LF) to high-frequency (HF) power from spectral analysis of R-R intervals; and 2) by the interbeat autocorrelation coefficient of R-R intervals (rRR intervals between two successive cardiac beats). The results revealed that oscillations in delta wave activity, adrenocorticotropic activity, and autonomic activity are linked in a well-defined manner. Delta wave activity developed when cortisol secretory rates had returned to low levels and sympathetic tone was low or decreasing, as reflected by a low LF/HF ratio and by low levels in rRR. Conversely, the decrease in delta wave activity occurred together with an increase in the LF/HF ratio and in rRR. REM sleep was associated with a decrease in cortisol secretory rates preceding REM sleep onset, whereas the LF/HF ratio and rRR remained high. These results demonstrate a close coupling of adrenocorticotropic, autonomic, and EEG ultradian rhythms during sleep in man. They suggest that low neuroendocrine activity is a prerequisite for the increase in slow wave activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call